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Parametric expressions, based on three different theoretical models, are used to calculate the isothermal
susceptibility, specific heat, and order parameter along the critical isochore and coexistence curve from the
asymptotic region to the crossover region. These models are(i) the minimal-subtraction renormalization
scheme,(ii ) the massive renormalization scheme within thef4 model, and(iii ) the crossover parametric model
based on the crossover Landau model. We fit these theories globally to experimental measurements of the
isothermal susceptibility and specific heat along the critical isochore and coexistence curve, and to the coex-
istence curve of3He near its liquid-vapor critical point. All of the theories provide good agreement with the
experimental measurements within the reduced temperature rangeutuø2310−2. The differences in the fits
between the theories and the correlations between the adjustable model parameters are discussed.
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I. INTRODUCTION

It is well known that many thermodynamic quantities ex-
hibit singularities asymptotically close to the critical point.
The power-law behavior of these singularities, characterized
by critical exponents and the concept of universality and
scaling, has been successfully described by renormalization-
group (RG) theory [1]. Away from the asymptotic region,
thermodynamic quantities of real physical systems deviate
from simple power-law behavior. However, RG theory can
still provide insight in understanding behavior in this cross-
over region.

There are two main field-theoretical renormalization-
group schemes that treat critical-to-classical crossover phe-
nomena. Dohm and co-workers developed the minimal-
subtraction renormalization(MSR) scheme [2–5] while
Bagnuls and Bervillier developed the massive renormaliza-
tion (MR) scheme[6,7]. Both of these theories used the
Borel resummation technique to describe crossover behavior
within the f4 model in anyOsnd universality class and in
three dimensions. The differences between the two schemes
were discussed in Ref.[4]. These field-theoretical crossover
theories were improved over the years as asymptotic theories
became more accurate[8]. Recently, Larinet al. improved
the MSR expressions for the specific heat and compared their
results with the superfluid heliumsn=2d system[9]. Bagnuls
and Bervillier have also improved their theory to match the
more recent asymptotic values for exponents and leading
amplitude ratios[10–12]. Both renormalization schemes can
provide crossover functional forms for thermal properties
with a minimal set of fluid-dependent adjustable parameters.
However, these two renormalization schemes only apply to
the primary critical paths(critical isochore and coexistence
curve) and are not as yet models for a complete equation of
state. Recently, Agayanet al. developed a phenomenological
crossover parametric model(CPM) equation of state[13]
that is also consistent with RG theory. The internal constants
within this model were adjusted such that the ratios of
asymptotic and first correction-to-scaling amplitudes agreed
to within theoretical uncertainties with the values determined
in renormalization-group theory[13].

Traditionally the susceptibilityxT, specific heatCV, and
coexistence curveDrL,V can be expressed in terms of the
standard Wegner expansion as

xT
± = G0

±utu−gs1 + G1
±utuD + ¯ d, s1d

CV
± = A0

±utu−as1 + A1
±utuD + ¯ d + Bcr + CB, s2d

DrL,V = ± B0utubs1 + B1utuD + ¯ d. s3d

Here t;T/Tc−1 is the reduced temperature withTc being
the critical temperature.a, b, g, andD are universal critical
exponents whose values are estimated from RG theory. For
susceptibility, “1” is along the critical isochore aboveTc,
and “2” is along the coexistence curve belowTc. For spe-
cific heat, “1” is along the critical isochore aboveTc, and
“2” is along the critical isochore in the coexisting phases
belowTc, andBcr andCB are the critical and analytical back-
ground contributions, respectively. For the coexistence
curve, “1” and “2” stand for the liquid and vapor phases
respectively.G0

±, A0
±, andB0 are the leading asymptotic criti-

cal amplitudes andG1
±, A1

±, andB1 are the first Wegner ex-
pansion amplitudes. All the critical amplitudes in Eqs.
(1)–(3) can be expressed in terms of fluid-dependent model
parameters as well as the values of model-independent uni-
versal parameters. In this paper we will present a direct com-
parison of the three theoretical models to various experimen-
tal measurements near the liquid-gas critical point of3He.

II. FIT TO EXPERIMENTAL MEASUREMENTS

In fitting experimental measurementsyexpt to theory, we
minimize

x2 = o
i=1

N Syexpt,i − ytheorysxi,aWd
si

D2

, s4d

whereaW is an array of fitting parameters,xi is an independent
variable (reduced temperature or temperature in our case),
and si is the standard error assigned to each experimental
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measurement. The goodness of a fit is characterized by the
value

xn
2 =

x2

N − M
, s5d

whereN is the number of data points andM is the number of
fitting parameters.

In this paper, we perform a joint fit of the three thermal
properties, isothermal susceptibility, specific heat, and coex-
istence curve, in order to more completely test the theoretical
models than fitting the properties separately. To make sure
that no particular measurement dominates the joint fit, a
proper weighting is needed to balance the varying numbers
of measurements in different properties. We chose the fol-
lowing weighting in order to normalize an averagex̄2 by the
number of data points:

x̄2 =
N

3
S xxT

2

NxT

+
xCV

2

NCV

+
xDrL,V

2

NDrL,V

D s6d

where N=NxT
+NCV

+NDrL,V
is the total number of data

points.
The standard errors for each indexi in Eq. (4) is given

by

s2 = sy
2 + S ]y

]x
D

aW

2

sx
2. s7d

The partial derivative in Eq.(7) is evaluated numerically in
each fitting iteration. We assumed each measurement has a
k% uncertainty and assignedsy=k3y/100. Based on the
measurement uncertainties reported in Ref.[14], we assigned
the uncertainties in the measured susceptibility to be
sxT

sT.Tcd=0.02xTsT.Tcd and sxT
sT,Tcd=0.1xTsT,Tcd.

The uncertainties in the measured specific heat were assigned
to be sCV

sT.Tcd=0.01CVsT.Tcd and sCV
sT,Tcd

=0.05CVsT,Tcd. The uncertainties in the measured coexist-
ence curve were assigned to vary monotonically from 1% at
utu=6310−4 to 0.2% atutu=1310−2. In the joint fit, xT and
CV were fitted against temperatureT while uDrL,Vu was fitted
against reduced temperatureutu. The uncertainty in the tem-
perature measurement forxT andCV was assigned to besx
=1310−5 K which corresponded to an uncertainty for any
reduced temperature ofsx/Tc=3310−6 K.

All the experimentally measured quantities were made di-
mensionless by expressing them in units of appropriate com-
binations of the3He critical temperatureTc=3.315 K, critical
density rc=0.041 45 g/cm3, and critical pressure Pc
=0.1146 MPa.

In fitting specific heat data to theoretical models, the ana-
lytical backgroundCB was taken to be an adjustable param-
eter. The true crossover behavior described by the models
can be revealed whenCB is considered a constant within a
small reduced temperature range aroundTc. To this end, the
fits were limited to the reduced temperature rangeutuø2
310−2. In fitting coexistence curve data to theoretical mod-
els, a background contribution, resulting from order param-
eter saturation and only important further away from the
critical point [14], was not included. Therefore, the coexist-

ence curve fit was limited to the reduced temperature range
utuø4310−2.

III. THEORETICAL EXPRESSIONS OF MINIMAL-
SUBTRACTION RENORMALIZATION SCHEME

Detailed derivations of theoretical expressions based on
the minimal-subtraction renormalization scheme were given
in a previous publication[14]. References to the original
studies by Dohm and co-workers were also given in Ref.
[14]. In this paper, we summarize the key expressions. The
Hamiltonian for thef4 model in three dimensionssd=3d is

Hf =E d3xH1

2
r0f0

2 +
1

2
s¹f0d2 + u0f0

4J , s8d

wheref0 is the order parameter field. The nonuniversal pa-
rameteru0 is the fourth-order coupling constant and the pa-
rameterr0 is related to the reduced temperature by

r0 − r0c = a0t, s9d

wherea0 is a nonuniversal constant andr0c is the value ofr0
at the critical point. The total Hamiltonian is the sumH
=Hf+H0, whereH0 is the analytic background free energy.

The dimensionless bare order parameter fieldf0 and the
bare coupling parametersu0 andr0 are renormalized tof, u,
and r by the expressions

f = Zfsu,ed−1/2f0, s10d

u = m−1Zusu,ed−1Zfsu,ed2A3u0, s11d

r = Zrsu,ed−1sr0 − r0cd, s12d

wherem−1 is an arbitrary reference length,A3=s4pd−1 is a
geometric factor, ande=4−d=1 for dimensiond=3. TheZ
functions are associated with their respective field-theoretic
functions[4]

zrsud = um]m ln Zrsu,ed−1u0, s13d

zfsud = um]m ln Zfsu,ed−1u0, s14d

busud = ufu − 1 +m]msZu
−1Zf

2du0g = − F d

du
lnsuZuZf

−2dG−1

,

s15d

where the index 0 means differentiation at fixedr0, f0, and
u0.

By introducing a flow parameterl, the effective coupling
usld satisfies the flow equation

l
dusld

dl
= bu„usld…. s16d

The flow parameterl is related to the correlation length by

jsld = smld−1. s17d

The flow parameter valuel =0 corresponds to the Ising fixed
point usl =0d=u*, which is determined frombusu* d=0. The
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effective couplingrsld satisfies the flow equation

l
drsld

dl
= rsldzr„usld…. s18d

The flow parameter valuel =1 is an arbitrary reference point,
at which the nonuniversal initial values areusl =1d;u and
rsl =1d; r =at.

The values of the field-theoretic functionszrsud, zfsud,
and busud were calculated using the Borel resummations of
five-loop expansions in the entire range 0,u,u* [3,4].
Once the field-theoretic functionszrsud, zfsud, andbusud in
Eqs. (13)–(15) are obtained, the reduced temperature, sus-
ceptibility, specific heat, and coexistence curve are given by
[4,5]

utu =
m2

a
b±„usld…expF−E

u

usld

du8
zrsu8d − 2

busu8d G , s19d

xT
± =

Zfsud
m2f±„usld…

expF−E
u

usld

du8
zfsu8d + 2

busu8d G , s20d

CV
± =

a2A3K±„usld…
4m

expF−E
u

usld

du8
1 − 2zrsu8d

busu8d G + CB,

s21d

kDrL,Vl2 = mA3Zfsudff„usl−d…expF−E
u

usl−d

du8
zfsu8d − 1

busu8d G .

s22d

In Eqs.(19)–(22), b±, f±, K±, and ff are the amplitude func-
tions whose values at the fixed pointu* were calculated us-
ing the Borel resummations of five-loop expansions. Away
from the fixed point, these amplitude functions were ex-
panded to two-loop order atu=0 and additional extrapola-
tion terms were added to reproduce the function values at the
fixed point. All relevant references for the amplitude func-
tions were given in Ref.[14]. l−=smj−d−1 is linked to the
correlation length in coexisting phases. The quantityZf is
given by

Zfsud−1 = expE
0

u

du8
zfsu8d
busu8d

. s23d

The expressions, derived from Eqs.(19)–(22), for the leading
and first Wegner expansion amplitudes of the three thermal
properties are given in Ref.[14]. The correction-to-scaling
exponentD is defined asD;nv with v= udbu/duuu* . The
critical fluctuation background of specific heat,Bcr, is implic-
itly contained in the first term of Eq.(21).

In general, the fit of a theoretical model to isothermal
susceptibility, specific heat, and coexistence curve requires
three system-dependent parameters, two for the determina-
tion of asymptotic amplitudes and one for the determination
of the crossover. In the joint fit to the MSR model, these
three system-dependent parameters correspond tom, a, u. In
addition, the analytical background for the specific heatCB
and the critical temperatureTc were also adjusted. Due to the

strong nonlinearity in the MSR formulas, the fit would settle
near any chosen initial value ofu/u* in the range
0.3,u/u* ,0.9997. Scannedu/u* in this range yielded a
minimum in x̄n

2 at u/u* =0.996±6310−10. Table I shows the
covariance matrix generated from the joint fit. The off-
diagonal elements represent the correlation between the fit-
ting parameters. There is a strong correlation betweenm and
a in the MSR model when three model-specific fitting pa-
rameters were used. Hence the improvement in the minimi-
zation of x̄n

2 was insignificant compared to a two-parameter
fit, usingm anda, previously performed in Ref.8 [14] on the
same data set.

The MSR joint fit results are shown in Fig. 1 and com-
pared with other models in Table VI. The Wegner expansions
to first order are shown as dashed lines in Fig. 1 using the
critical amplitudes,G0

± andG1
±, A0

± andA1
±, B0 andB1, calcu-

lated from the fit to the MSRf4 model.

IV. MASSIVE RENORMALIZATION SCHEME

Bagnuls and Bervillier(BB) developed a massive renor-
malization scheme[6,7] to describe critical behavior. In this
field-theoretical framework, the Hamiltonian is the same as
written in Eq. (8) except the bare coupling constant for the
f4 term isg0/ s4! d instead ofu0. The renormalization of the
order parameterf0 and the bare parametersg0 and a0 are
essentially the same as given in Eqs.(10)–(12).

BB derived the parametric expressions for their reduced
temperaturet;T/Tc−1, correlation length, isothermal sus-
ceptibility, specific heat, and coexistence curve in terms of
the renormalized coupling parameterg. This coupling pa-
rameter satisfied the flow equation(16) with the Wilson
function Wsgd that is equivalent to thebusud function in the
MSR analysis. For example, the expression for the isother-
mal susceptibility is given byxT=x0xsgd, where x0 is a
fluid-dependent constant amplitude andxsgd satisfies

xsgd = xsy0dexpF−E
y0

g

dx
gsxd

nsxdWsxdG . s24d

At the fixed point g*, gsg* d and nsg* d provide field-
theoretical estimates of the critical exponentsg and n. The
functions of g for the reduced temperature, correlation
length, isothermal susceptibility, specific heat, and coexist-
ence curve were expanded in power series aboutg=0. The
power series were then resumed over the entire range
g0,g* f.

TABLE I. The covariance matrix generated from the joint fit of
the MSR model to the experimental data. The off-diagonal elements
represent the correlation between the fitting parameters.

Tc m a u/u* CB

Tc 1 0.28 0.29 0.22 0.13

m 0.28 1 0.99 0.40 0.15

a 0.29 0.99 1 0.42 0.16

u/u* 0.22 0.40 0.42 1 0.95

CB 0.13 0.15 0.16 0.95 1
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Equation(24) can be transformed into an expression very
similar to Eq.(20) using the scaling relationg=ns2−hd and
the identityzfsu* d=−h. Here h is the critical exponent of
the fluctuation correlation at the critical point andn is the
critical exponent of the correlation lengthj. Thus the only
difference between Eq.(24) and Eq.(20) is that the ampli-
tude before the exponential function is a constant in Eq.(24)
while it is a mild function ofusld in Eq. (20). Similar com-
parisons of the expressions for the specific heat and coexist-
ence curve can be made between the MSR and MR schemes.

Recently Bagnuls and Bervillier reconsidered their MR
scheme. They improved their sixth-loop series[10,11] and
then made a new seventh-loop series[12]. In these sixth- and
seventh-loop series, they chose a new convergence criterion
for the Borel resummation of different functions likegsgd

andWsgd such that the “max” and “min” bounds of the re-
sultant leading critical amplitude ratios agreed as closely as
possible with the values obtained by Guida and Zinn-Justin
[8]. Because of the “max” and “min” bounds on the Borel
resummation, an envelope was obtained for each function
such asxsgd. Two look-up tables were then made for a given
property versus a temperature like scaling fieldt over the
entire rangeg0,g* f for the “max” and “min” bounds. Bag-
nuls and Bervillier used the following empirical expression
to fit the discrete data from a particular look-up table:

Fstd = Ztep
i=1

N

s1 + Xit
DstddYi , s25d

Dstd = D − 1 +
S1

Ît + 1

S2
Ît + 1

, s26d

t = uutu. s27d

HereNø5 depending on the required fit quality. In the ho-
mogeneous phaseT.Tc, the Fstd expression was used to
calculate the correlation length inversej−1std, the suscepti-
bility inverse xT

−1std, and the specific heatCVstd. In the in-
homogeneous phaseT,Tc, theFstd expression was used to
calculate the reduced liquid and vapor densitiesDrL,Vstd, the
susceptibility inversexT

−1std at the coexistence curve, and the
specific heatCVstd in the coexisting phases.

All the constants,Z, Xi, Yi, andSi, in Eqs.(25) and (26)
are universal and are tabulated in Ref.[12]. For specific heat,
another universal constantX6 was added toFstd that is re-
lated to the critical fluctuation background. The universal
asymptotic amplitude ratios were determined from theZ
value in eachFstd. The proportionality factoru is the link
betweent and the experimental reduced temperaturet. Here
u is a nonuniversal parameter that exclusively controls the
magnitude of the corrections to scaling. The first Wegner
amplitudes can be calculated using

hG1
±,A1

±,B1,j1
±j = KuDo

i=1

N

XiYi s28d

with K=−1 for xT andj, andK= +1 for CV andDrL,V.
Since there are two sets(“max” and “min”) of Fstd for

each thermal property, their difference in the present theoret-
ical calculation is generally much larger than the accuracy of
the experimental measurements, sometimes neither one nor
the other agreed with the measurements. To overcome this
problem, Bagnuls and Bervillier defined a new theoretical
function [12]

FEstd = fFmaxstdgEfFminstdg1−E, s29d

with E being an additional adjustable parameter. In fitting
FEstd to experimental data,u is an adjustable parameter for
both Fmax and Fmin. In the case of specific heat, a linearly
mixed X6=EX6

max+s1−EdX6
min term is added toFE. When

fitting to experimental data,FEstd is scaled by a fluid-
dependent amplitude(x0 for the isothermal susceptibility,c0
for the specific heat,m0 for the coexistence curve, andj0 for

FIG. 1. A joint fit (solid lines) of the MSR model to the3He
susceptibility, specific heat, and coexistence curve measurements.
The fit used all thexT data and theCV and uDrL,Vu data over the
range indicated by the arrows. The dashed lines are the Wegner
expansion to first order using the amplitudes calculated with the
best fit parametersu/u*, m, anda. The values of the fitting param-
eters and calculated critical amplitudes are compared with other
models in Table VI. The dot-dashed straight lines represent the
asymptotic predictions from the fit.
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the correlation length). In our fit, x0 andc0 were adjusted and
m0 was calculated through the universal ratioRc
=aA0

+G0
+/B0

2. E was initially fixed at 0.5 in order to have a
minimum number of adjustable parameters when comparing
the BB theory to other theoretical predictions.

Figure 2 shows the result of the joint fit of the experimen-
tal data to the improved sixth-loop predictions by Bagnuls
and Bervillier[10,11]. Figure 3 shows the result of the joint
fit of the same data to the new seventh-loop complete cross-
over predictions[12]. The weight and fitting ranges were the
same as used for the MSR analysis.Tc andCB were adjusted
in addition tou, x0, andc0. The values ofE fall outside valid
range 0øEø1 if it is allowed to vary in the fit. Table II
shows the values of the goodness of fit for different fixedE
values. On average, BB’s improved sixth-loop scheme gave

better fits than the seventh-loop scheme even though the
seventh-loop scheme generated the smallestx̄n

2 with E=1.
The Wegner expansions to first order, calculated using the

critical amplitudesG0
±, G1

±, A0
±, A1

±, B0, andB1 from the fit to
the MR models, are also shown as dashed curves in Figs. 2
and 3. The dashed curves are consistently above the solid

FIG. 2. A joint fit (solid lines) of BB’s improved sixth-loop
scheme to the3He susceptibility, specific heat, and coexistence
curve measurements. The fit used all thexT data and theCV and
uDrL,Vu data over the range indicated by the arrows. The dashed
lines are the Wegner expansion to first order using the amplitudes
calculated with the best fit parametersx0, c0, andu. The values of
the fitting parameters and calculated critical amplitudes are com-
pared with other models in Table VI. The dot-dashed straight lines
represent the asymptotic predictions from the fit.

FIG. 3. A joint fit (solid lines) of BB’s complete seventh-loop
scheme to the3He susceptibility, specific heat, and coexistence
curve. The fit used all thexT data and theCV and uDrL,Vu data over
the range indicated by the arrows. The dashed lines are the Wegner
expansion to first order using the amplitudes calculated with the
fitting parametersx0, c0, andu. The values of the best fit parameters
and calculated critical amplitudes are compared with other models
in Table VI. The dot-dashed straight lines represent the asymptotic
predictions from the fit.

TABLE II. The values of goodness of fitx̄n
2 for different mixing

E values in the MR analysis.

E Improved sixth loop Complete crossover seventh loop

0.0 1.35 1.80

0.5 1.38 1.52

1.0 1.43 1.32
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curves except for the coexistence curve from the seventh-
loop analysis. WhenE=1 is used to minimizex̄n

2, the dashed
curve of the Wegner expansion of the coexistence curve is
above the solid curve.

Table III shows the correlation values of the MR fitting
parameters. There is a strong correlation between the ampli-
tude parametersx0 and c0 that is similar to the correlation
betweenm anda found in the MSR analysis.

V. CROSSOVER PARAMETRIC EQUATION OF STATE

Agayan and Anisimov developed a new crossover para-
metric model equation of state[13] based on the original
asymptotic extended parametric model[15]. In that model,
the rescaled critical part of the classical local Helmholtz free-
energy density is given by

DÃcl =
1

2
ctDT̃M2 +

u * ūL

4!
M4 +

1

2
s¹̃Md2. s30d

Here the reduced temperature is defined asDT̃;1−Tc/T
(which is different from the traditional definition of reduced
temperature), ū=u/u* is a normalized coupling constant,L
is a dimensionless cutoff wave number, andct characterizes
the range of intermolecular interaction. In this scheme,u* is
the value ofu at the fixed point of the Ising model, although
its value is different from that of MSR because of different
scaling in the Hamiltonian.

For a parametric equation of state in a reduced-
temperature versus reduced-density plot, the radial variabler
measures the distance to the critical point and angular vari-
ableu measures the angle from the critical density and pre-
serves the analytic dependence. Agayan and Anisimov for-
mulated the crossover by rescaling the distance variabler
with the crossover functionY that satisfied

1 − s1 − ūdY = ūf1 + sL/kd2g1/2Yn/D. s31d

Here k2=ctrY
s2n−1d/D and n is the critical exponent for the

correlation length.
The scaling fieldsh1,h2, and the critical part of the ther-

modynamic potentialDF̃ can be described by the parametric
representation in terms of the variablesr andu as

h1 = r3/2Ys2bd−3d/2Dl̃sud, h2 = rksud, s32d

and

DF̃ = r2Y−a/Dw̃sud +
1

2
Bcrr

2s1 − b2u 2d2, s33d

where the analytic functions ofu are

l̃sud = l̃0us1 − u 2d, ksud = 1 −b2u 2, s34d

w̃sud = m̃0l̃0fw0 + w1u 2 + w2u 4 + w3u 6 + w4u 8g. s35d

Here Bcr=−2m̃0l̃0w0,0 is a fluctuation induced constant,

m̃0=m0g
b−1/2, l̃0= l0g

bd−3/2, andg=sūLd2/ct. The bare param-
etersm0 and l0 are two system-dependent coefficients that
determine the asymptotic critical amplitudes. The two cross-
over parametersū andL /ct

1/2 determine the shape of cross-
over and the crossover temperature scale[16]. The parameter
b2 and the coefficientsw0¯w4 were selected such that all
the universal asymptotic amplitude ratios were satisfied
within their accuracies with the values given in the Ising
model calculation of Ref.[17] while the ratios of the first
correction-to-scaling amplitudes agreed within their accura-
cies with the values given by BB’s earlier work[7].

In the lattice gas model, the ordering and nonordering
fields h1 and h2 are mapped onto the physical fields of the
chemical potential differenceDm̃ and reduced temperature

DT̃. Here Dm̃;src/PcdsTc/Tdsm−m0d with m0sTd being an
analytic function of temperature that is equal to the chemical
potentialm whenh1=0.

For real fluids, the ordering and nonordering fields are
approximated by linear combinations of the physical fields

Dm̃ andDT̃ in order to account for the corrections to scaling
in the nonasymptotic regime. By choosing the value of the
scaled energy density at the critical point to beũc

=s]P̃/]T̃dm̃ evaluated at the critical point, one can write the
linear combination as

h1 = Dm̃, s36d

h2 = DT̃ + b2Dm̃, s37d

with b2 being the mixing parameter that is also a measure of
the asymmetry in the slope of the coexistence curve. The
parameters conjugate to the fieldsh1 andh2 are given by

w1 ; − S ]DF̃

]h1
D

h2

= Dr − b2Dũ, s38d

w2 ; − S ]DF̃

]h2
D

h1

= Dũ, s39d

where Dr;sr /rc−1d is the reduced fluid density andDũ
;sũ− ũcd is the difference between the scaled energy density
and its valueũc at the critical point.

To carry out the calculation further, the variables fromh1
and h2 were changed to the parametric parametersr and u.
Once the analytic expressions for the first and second deriva-
tives of r andu with respect toh1 andh2 are obtained from
the definition ofh1 andh2 in Eq. (32) as functions ofr andu,
the isothermal susceptibility, the specific heat at constant vol-

TABLE III. The covariance matrix generated from the joint fit
of the MR sixth-loop scheme to the experimental data. The off-
diagonal elements represent the correlation between the fitting pa-
rameters. The result from the seventh-loop scheme is almost
identical.

Tc u x0 c0 CB

Tc 1 0.17 0.39 0.34 −0.07

u 0.17 1 0.39 −0.02 −0.48

x0 0.39 0.39 1 0.90 0.05

c0 0.34 −0.02 0.90 1 0.27

CB −0.07 −0.48 0.05 0.27 1
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ume, and the coexistence curve can be calculated from

xT =
Tc

T
S ]r

]m̃
D

T

, s40d

CVsT . Tcd = STc

T
D2S ]ũ

]T̃
D

r

, s41d

CVsT , Tc,r = rcxcd = STc

T
D2S ]ũ

]h2
D

h1

, s42d

DrL,V = − S ]DF̃

]h1
D

h2

− b2S ]DF̃

]h2
D

h1

. s43d

For a specific heat measurement in the coexisting phases, the
system follows the path ofu= ±1 before and after a heat
pulse is applied. From Eq.(32), it can be shown that

s]h1/]T̃du=±1=0, which implies s]ũ/]T̃du=±1=s]ũ/]h2dh1
su

= ±1d. For a given reduced temperature and density, the pa-
rametersr andu are solved numerically. It is well known that
3He has the most symmetric coexistence curve among simple
fluids. This implies thatb2<0 for 3He. In this paper, we set
b2=0 to simplify our expressions and calculations. Along the
critical isochore aboveTc, one hasu=0 in the caseb2=0,
thush1=0.

In the joint fit of the CPM model to the isothermal sus-
ceptibility, the specific heat, and the coexistence curve of
3He, l0, m0, ū, CB, andTc were adjusted. In this fit,L is fixed
at unity, the value obtained in the Ising model[18], andct
=6/p2 is also fixed based on the approximation of the inter-
action range between fluid molecules[18]. The weighting
and total standard deviation for each set of experimental data
is the same as before. The joint fit results are shown in Fig. 4
and compared with other models in Table VI. The Wegner
expansions to first order are also shown as dashed curves in
Fig. 4 using the critical amplitudesG0

±, G1
±, A0

±, A1
±, B0, B1

calculated from the fit to the CPM model. These dashed
curves are either above or below the solid curves that are
calculated using the full CPM model. On the other hand, as
shown in Figs. 1–3, the calculated Wegner expansion curves
from the MSR and MR models are consistently above the
solid curves calculated from the full models. The relatively
largex̄n

2 generated from the fit to the CPM model appears to
come from the large difference between theory and experi-
ment in the specific heat belowTc.

Table IV shows the correlation values of the CPM fitting
parameters. Again there is a strong correlation between two
of the parametersū andm0, similar to what was found in the
MSR and MR analyses.

VI. UNIVERSAL AMPLITUDE RATIOS

Even though the leading amplitude and subsequent Weg-
ner expansion coefficients are fluid dependent, certain com-
bined ratios of these amplitudes are universal. From the
equations for the first Wegner amplitudes of the specific heat,

FIG. 4. A joint fit (solid lines) of the CPM model to the3He
susceptibility, specific heat, and coexistence curve measurements.
The fit used all thexT data and theCV and uDrL,Vu data over the
range indicated by the arrows. The dashed lines are the Wegner
expansion to first order using the amplitudes calculated with the
fitting parametersl0, m0, andū. The values of the best fit parameters
and calculated critical amplitudes are compared with other models
in Table VI. The dot-dashed straight lines represent the asymptotic
predictions from the fit.

TABLE IV. The covariance matrix generated from the joint fit of
the CPM model to the experimental data. The off-diagonal elements
represent the correlation between the fitting parameters.

Tc ū l0 m0 CB

Tc 1 −0.15 0.37 −0.15 −0.18

ū −0.15 1 −0.15 0.91 −0.50

x0 0.37 −0.15 1 −0.11 −0.49

c0 −0.15 0.91 −0.11 1 −0.49

CB −0.18 −0.50 −0.49 −0.49 1
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susceptibility, coexistence curve, and correlation length, one
notices in the MSR model that the system-dependent part is
the same in every expression[14]. Equation(28) also shows
that all first Wegner amplitudes share the same system-
dependentuD in the MR scheme. Therefore the ratio of any
of these first Wegner amplitudes is universal based on the
MSR and MRf4 models. The expressions for these univer-
sal ratios in the MSR scheme have been given in Ref.[14].
In this paper we only list the values in Table V. The values
given by Bagnuls and Bervillier are closely matched to those
of Guida and Zinn-Justin[8] after the readjustment of the
Borel resummation criteria[12].

VII. DISCUSSION

In this paper we have used parametric expressions to cal-
culate the isothermal susceptibility, specific heat, and coex-
istence curve. These parametric expressions were based on
the MSR, MR, and CPM theoretical models. All the critical
leading amplitude ratios were defined in these models and
their values are listed in Table V. The theories were fitted to
the 3He experimental data recently obtained for the isother-
mal susceptibility and specific heat, and earlier measure-
ments of the coexistence curve. The agreement between
these theories and experimental measurements is good.

TABLE V. The values of universal amplitude ratios obtained from various theoretical models.

Amplitude
ratios MSRa MR(7)b CPMc FZd

G0
+/G0

− 4.94 4.79±0.10 4.94 4.95±0.15

A0
+/A0

− 0.535 0.537±0.019 0.524 0.523±0.009

Rc 0.0580 0.0574±0.0020 0.0580 0.0581±0.0010

G1
+/G1

− 0.228 0.215±0.029 0.195

A1
+/A1

− 1.07 1.36±0.47 0.83

B1/G1
+ 0.76 0.40±0.35 0.897

aZhonget al. [14].
bBagnuls and Bervillier[12].
cAgayan and Anisimov[13].
dFisher and Zinn[17].

TABLE VI. The dimensionless system-dependent parameters for3He. The adjustable parameters are obtained from the joint fit of the
three different models to the measuredxT, CV, and uDrL,Vu data of3He. Zero uncertainty implies that the parameter is held constant during
the fit.

MSR MR(6)a MR(7)b CPM

x̄n
2 1.40 1.38 1.52 2.31

u/u* =0.996±0.000 E=0.5±0.0 0.5±0.0 L /ct
1/2=1.283±0.000

u=0.0177±0.0005 0.0190±0.0005 ū=0.368±0.004

m3103=1.09±0.01 x0=1.818±0.008 1.835±0.008 l0=6.902±0.034

a=0.275±0.002 c0=2.231±0.009 2.212±0.009 m0=0.3128±0.0004

CB 3.72±0.05 6.67±0.01 6.65±0.01 3.86±0.02

Tc (fit) 3.315543±0.000005 3.315540±0.000005 3.315545±0.000005 3.315523±0.000006

G0
+ 0.147±0.001 0.146±0.001 0.147±0.001 0.153±0.001

G0
− 0.0299±0.0002 0.0308±0.0001 0.0307±0.0001 0.0310±0.0002

G1
+ 1.10±0.01 1.13±0.01 1.17±0.01 0.81±0.01

G1
− 4.83±0.05 3.58±0.05 5.49±0.05 4.17±0.07

A0
+ 3.76±0.05 3.72±0.01 3.80±0.02 3.63±0.02

A0
− 7.03±0.09 6.88±0.03 7.09±0.03 6.935±0.004

A1
+ 0.99±0.01 1.13±0.01 1.10±0.01 0.61±0.01

A1
− 0.92±0.01 1.17±0.01 0.86±0.01 0.74±0.01

Bcr −5.39±0.08 −8.31±0.03 −8.38±0.03 −5.09±0.03

B0 1.021±0.002 1.008±0.004 1.029±0.004 1.028±0.001

B1 0.91±0.01 1.00±0.01 0.225±0.003 0.73±0.01

aSixth-loop calculation.
bSeventh-loop calculation.
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Although three model parameters were used in all the
joint fits to the experimental data, the strong correlation ob-
served between two of the three adjustable model parameters
for each theoretical model suggests that3He as a simple fluid
is situated very close to a renormalized trajectory that links
the Gaussian and the Wilson-Fisher fixed points[19,20]. Be-
cause of this special feature of simple fluids, the roles played
by other nonuniversal scales are effectively negligible, and
the number of adjustable parameters can be reduced. The
degree of degradation in the goodness of fitx̄n

2 due to the
reduction of the adjustable parameters depends on the par-
ticular model. In the MSR case, the very high correlation of
0.99 betweenm and a indicates that using only two adjust-
able parameters would not result in any significant decrease
in the fit quality. The MSR model with one less adjustable
parameter has a comparablex̄n

2 to that of the MR model.
Both the MSR and MR models fit better than the CPM model
which implies that they provide a better representation of the
real fluid behavior near the critical point. The fitting param-
eters and the resultant critical amplitudes for all these models
are listed in Table VI.

Although all the theoretical models tested in this paper
provide a good description of experimental measurements
along the critical isochore and coexistence curve, the more
first-principle MSR and MR models are not complete equa-
tions of state. The CPM model is a complete equation of

state even though it is phenomenological. This CPM model
was developed to fit simple fluids as well as complex fluid
systems that exhibit nonmonotonic crossover behavior. This
nonmonotonic crossover behavior could be described by the
CPM approach using a finite cutoff wavelength as an addi-
tional fitting parameter. However, in simple fluid systems
like 3He, crossover behavior of different physical quantities
can be described quite well within the framework of the field
theoreticalf4 model without a finite cutoff wave number.

NASA has supported the development of future micro-
gravity flight experiments[21,22] performing susceptibility,
specific heat, and coexistence curve measurements of3He in
the asymptotic region. Combining these possible future mi-
crogravity measurements in the asymptotic region with
ground-based measurements in the crossover region would
permit a rigorous test of the predictions of renormalization
theories.
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