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Comparison of theoretical models of crossover behavior near theHe liquid-vapor critical point
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Parametric expressions, based on three different theoretical models, are used to calculate the isothermal
susceptibility, specific heat, and order parameter along the critical isochore and coexistence curve from the
asymptotic region to the crossover region. These models(iarthe minimal-subtraction renormalization
scheme(ii) the massive renormalization scheme within @#femodel, andiii ) the crossover parametric model
based on the crossover Landau model. We fit these theories globally to experimental measurements of the
isothermal susceptibility and specific heat along the critical isochore and coexistence curve, and to the coex-
istence curve ofHe near its liquid-vapor critical point. All of the theories provide good agreement with the
experimental measurements within the reduced temperature fasg@x 1072, The differences in the fits
between the theories and the correlations between the adjustable model parameters are discussed.
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I. INTRODUCTION Traditionally the susceptibilityyy, specific heatC,, and
It is well known that many thermodynamic quantities ex- COexistence curve\p, , can be expressed in terms of the
hibit singularities asymptotically close to the critical point. Standard Wegner expansion as

The power-law behavior of these singularities, characterized +_ |- 1A L L.

by critical exponents and the concept of universality and X = Tolt (L + Tt + --), @)
scaling, has been successfully described by renormalization- o aA

group (RG) theory [1]. Away from the asymptotic region, Cy=Aglt (1 +ASt]* + ---) + B, + Cg, 2
thermodynamic quantities of real physical systems deviate

from simple power-law behavior. However, RG theory can ApLy= £Bt]P(L+Byft]* + --+). (3)
still provide insight in understanding behavior in this cross-

over region. Heret=T/T,-1 is the reduced temperature willh being

There are two main field-theoretical renormalization-the critical temperaturey, B, y, andA are universal critical
group schemes that treat critical-to-classical crossover phé&xponents whose values are estimated from RG theory. For
nomena. Dohm and co-workers developed the minimalsusceptibility, “” is along the critical isochore above,,
subtraction renormalizationMSR) scheme [2-5] while ~ and “="is along the coexistence curve beldly. For spe-
Bagnuls and Bervillier developed the massive renormalizaCific heat, “+" is along the critical isochore abovg; and
tion (MR) scheme[6,7]. Both of these theories used the "~ IS along the critical |sochorg in the coexisting phases
Borel resummation technique to describe crossover behavidelow Tc, andB,, andCyg are the critical and analytical back-
within the ¢* model in anyO(n) universality class and in ground contributions, respectlvelly. For the coexistence
three dimensions. The differences between the two schem&§'rve, “+” ang “:" stand for the liquid and vapor phases
were discussed in Ref4]. These field-theoretical crossover reéspectivelyl’s, A;, andB, are the leading asymptotic criti-
theories were improved over the years as asymptotic theori¢dl amplitudes and’;, A, andB, are the first Wegner ex-
became more accurafé]. Recently, Larinet al. improved ~ Pansion amplitudes. All 'the critical amplltudes in Egs.
the MSR expressions for the specific heat and compared theit)<3) can be expressed in terms of fluid-dependent model
results with the superfluid heliuim=2) system[9]. Bagnuls  Parameters as well as t_he values of _model-lndepe_ndent uni-
and Bervillier have also improved their theory to match theVersal parameters. In this paper we will present a direct com-
more recent asymptotic values for exponents and leadin arison of the three theoretlc_al r_nodels tc_) various experimen-
amplitude ratio§10-12. Both renormalization schemes can @l measurements near the liquid-gas critical pointé.
provide crossover functional forms for thermal properties
with a minimal set of fluid-dependent adjustable parameters.
However, these two renormalization schemes only apply to
the primary critical pathgcritical isochore and coexistence  In fitting experimental measuremenys, to theory, we
curve) and are not as yet models for a complete equation ofinimize
state. Recently, Agayaet al. developed a phenomenological N
crossover parametric modéCPM) equation of statg13] 2- % (yexpu —ythem(xi,é)>2
that is also consistent with RG theory. The internal constants X = : ’
within this model were adjusted such that the ratios of
asymptotic and first correction-to-scaling amplitudes agreesvhered is an array of fitting parametens, is an independent
to within theoretical uncertainties with the values determinedvariable (reduced temperature or temperature in our xase
in renormalization-group theorl 3]. and g; is the standard error assigned to each experimental

Il. FIT TO EXPERIMENTAL MEASUREMENTS

(4)

i=1 O
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measurement. The goodness of a fit is characterized by thence curve fit was limited to the reduced temperature range
value t|<4x 1072

2
Xe= —X—, (5) IIl. THEORETICAL EXPRESSIONS OF MINIMAL-
N-M SUBTRACTION RENORMALIZATION SCHEME

whereN is the number of data points aiis the number of Detailed derivations of theoretical expressions based on

fitting parameters. the minimal-subtraction renormalization scheme were given

In th.is paper, we perform a jq!nt fit of _the three thermal in a previous publicatiorf14]. References to the original
properties, isothermal susceptibility, specific heat, and coei

ist in order t letelv test the th i tudies by Dohm and co-workers were also given in Ref.
IS egcle ctﬁrve,f'ltr:_or tir 0 moretgompe eyt els Te eli)re Ic 14]. In this paper, we summarize the key expressions. The
MOodels than Titing the properties separately. 10 Make SUurg, yitonjan for theg* model in three dimensiong=3) is

that no particular measurement dominates the joint fit, a

proper weighting is needed to balance the varying numbers )1 501 5 4
of measurements in different properties. We chose the fol- H¢>:fd X §r°¢°+ §(V¢o) +Uodhg ( (8)
lowing weighting in order to normalize an averageby the
number of data points: where ¢, is the order parameter field. The nonuniversal pa-
5 5 ) rameteru, is the fourth-order coupling constant and the pa-
2= N(& . Xcy . XApL,V) ©) rameterr is related to the reduced temperature by
3\Nyr Ne, NAPL,V ro—roc=agt, 9
where N=N, +Nc, +N,, , is the total number of data wherea,is a nonuniversal constant ang is the value of,
points. at the critical point. The total Hamiltonian is the suh
The standard erros for each index in Eq. (4) is given  =H ,+H,, whereHj is the analytic background free energy.
by The dimensionless bare order parameter figjdand the
2 bare coupling parameteug andr are renormalized t@, u,
o?=ol+ (%) o2, (7)  andr by the expressions
o - . 6=2,(u,6 V24, (10)
The partial derivative in Eq(7) is evaluated numerically in
each fitting iteration. We assumed each measurement has a _ -1 2
k% uncertainty and assigned,=kxy/100. Based on the U= 1724, €7 Z(U, € Aglo, (19
measurement uncertainties reported in Re4], we assigned _ 4
the uncertainties in the measured susceptibility to be r=2,(u,e (ro—roc), (12)

0 (T>T)=0.02¢(T>To) and o, (T<T)=0.Lx((T<Tc).  whereu!is an arbitrary reference lengthg=(4m) ! is a
The uncertainties in the measured specific heat were assigngdometric factor, and=4-d=1 for dimensiond=3. TheZ

to be o¢(T>T)=0.01C(T>Ty) and oc(T<Ty) functions are associated with their respective field-theoretic
=0.08C,(T<T,). The uncertainties in the measured coexist-functions[4]

ence curve were assigned to vary monotonically from 1% at

lt|=6x 10" to 0.2% at|t|=1x 102, In the joint fit, y; and G(w = pd, In Z(u,9 o, (13)
Cy were fitted against temperatuFewhile [Ap, | was fitted

against reduced temperatutg The uncertainty in the tem- {o(W) = pd, InZy(u, &), (14)
perature measurement fegr and C,, was assigned to be,

=1x10° K which corresponded to an uncertainty for any 12 d - 1
reduced temperature of /T,=3X 106 K. BuWw) =ul =1+, (Z;7Zy)lo] = - du In(uz,z;) |

All the experimentally measured quantities were made di-
mensionless by expressing them in units of appropriate com- (15

binations of théHe critical temperatur§cz3.315 K, critical where the index 0 means differentiation at f|)¢%d ¢0’ and
density p.,=0.04145 g/crhy, and critical pressureP, Up.

=0.1146 MPa. _ By introducing a flow parametdr the effective coupling
In fitting specific heat data to theoretical models, the anay(|) satisfies the flow equation

lytical backgroundCg was taken to be an adjustable param-
eter. The true crossover behavior described by the models Idu(I) = 3. (u(l)
can be revealed whe@g is considered a constant within a dl = Bu(ull)).
small reduced temperature range arodpdTo this end, the _ )
fits were limited to the reduced temperature rantjes2 The flow parameter is related to the correlation length by
X 1072 In fitting coexistence curve data to theoretical mod- D= (w2

- ) &) = (uh)™ (17
els, a background contribution, resulting from order param-
eter saturation and only important further away from theThe flow parameter valule=0 corresponds to the Ising fixed
critical point[14], was not included. Therefore, the coexist- point u(l=0)=u*, which is determined frong,(u*)=0. The

(16)
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effective couplingr(l) satisfies the flow equation

dr(l)

=5 =& ). (18)

The flow parameter value=1 is an arbitrary reference point,

at which the nonuniversal initial values an€l =1)=u and
r(l=1)=r=at.
The values of the field-theoretic functiods(u), ¢,(u),

and B,(u) were calculated using the Borel resummations of |,/ «

five-loop expansions in the entire range<Q<<u* [3,4].
Once the field-theoretic function$(u), £,(u), and B,(u) in

PHYSICAL REVIEW E 70, 066105(2004)

TABLE I. The covariance matrix generated from the joint fit of
the MSR model to the experimental data. The off-diagonal elements
represent the correlation between the fitting parameters.

T o a u/u* Cg
T 1 0.28 0.29 0.22 0.13
o 0.28 1 0.99 0.40 0.15
a 0.29 0.99 1 0.42 0.16

0.22 0.40 0.42 1 0.95
Cg 0.13 0.15 0.16 0.95 1

Egs. (13)—«(15) are obtained, the reduced temperature, sus-
ceptibility, specific heat, and coexistence curve are given byiong nonlinearity in the MSR formulas, the fit would settle

(4,5
@ _J‘“” &(u) -2
it = abi(u(l))exp[ R
() _f““) L) +2
=z T Y e |0

2 u(l) _ ’
C-\t/: a Agjjfu“)) exp|:_f dur%&f;j)} + CB’

(21)

u(l_) N _
<ApL,V>2:MA32¢(u>f¢(u<l->)exp[— J du'%]

(22)

In Egs.(19)+22), b, f., K, andf, are the amplitude func-
tions whose values at the fixed pount were calculated us-

near any chosen initial value ofti/u* in the range
0.3<u/u* <0.9997. Scanned/u* in this range yielded a
minimum iny? atu/u* =0.996+6x 1071°. Table | shows the
covariance matrix generated from the joint fit. The off-
diagonal elements represent the correlation between the fit-
ting parameters. There is a strong correlation betweamnd

a in the MSR model when three model-specific fitting pa-
rameters were used. Hence the improvement in the minimi-
zation of}f was insignificant compared to a two-parameter
fit, using u anda, previously performed in Réf[14] on the
same data set.

The MSR joint fit results are shown in Fig. 1 and com-
pared with other models in Table VI. The Wegner expansions
to first order are shown as dashed lines in Fig. 1 using the
critical amplitudesI'y andI'}, A; andA;, By andB;, calcu-
lated from the fit to the MSRs* model.

IV. MASSIVE RENORMALIZATION SCHEME

Bagnuls and Bervillie(BB) developed a massive renor-

ing the Borel resummations of five-loop expansions. AwayMalization schemg,7] to describe critical behavior. In this
from the fixed point, these amplitude functions were ex-field-theoretical framework, the Hamiltonian is the same as
panded to two-loop order at=0 and additional extrapola- W'ten in Eq.(8) except the bare coupling constant for the
tion terms were added to reproduce the function values at th€" €rm isgo/ (4!) instead ofu,. The renormalization of the
fixed point. All relevant references for the amplitude func-Order parameteg, and the bare parametegs and a, are

tions were given in Ref[14]. |_=(u&)™t is linked to the
correlation length in coexisting phases. The quardifyis
given by

e e [ gy £
Z ) expf0 u,Bu(U')

The expressions, derived from E@$9)—22), for the leading

(23)

essentially the same as given in E¢R))—<12).

BB derived the parametric expressions for their reduced
temperaturer=T/T;—1, correlation length, isothermal sus-
ceptibility, specific heat, and coexistence curve in terms of
the renormalized coupling parametgr This coupling pa-
rameter satisfied the flow equatiqi6) with the Wilson
function W(g) that is equivalent to th@,(u) function in the
MSR analysis. For example, the expression for the isother-

and firs_t Wegner_ expansion amplitudes of the three thermaha| susceptibility is given byyr=xox(9), where xo is a
properties are given in Refl4]. The correction-to-scaling flyid-dependent constant amplitude ap@) satisfies

exponentA is defined asA=vw with w= dg,/du|,. The
critical fluctuation background of specific heBt,, is implic-
itly contained in the first term of Eq21).

In general, the fit of a theoretical model to isothermal

g
0= x%)exp{— fyo dx%} L@

susceptibility, specific heat, and coexistence curve requiredt the fixed pointg*, y(g*) and v»(g*) provide field-
three system-dependent parameters, two for the determinthieoretical estimates of the critical exponemtand v. The
tion of asymptotic amplitudes and one for the determinatiorfunctions of g for the reduced temperature, correlation
of the crossover. In the joint fit to the MSR model, theselength, isothermal susceptibility, specific heat, and coexist-

three system-dependent parameters correspojg @pu. In
addition, the analytical background for the specific heat

ence curve were expanded in power series aged. The
power series were then resumed over the entire range

and the critical temperatufg. were also adjusted. Due to the ]0,g*[.
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AL L andW(g) such that the “max” and “min” bounds of the re-
0208 T =10.147 £ 0.001 sultant leading critical amplitude ratios agreed as closely as
If=1.10+001 possible with the values obtained by Guida and Zinn-Justin
0.15 gty [8]. Because of the “max” and “min” bounds on the Borel
. + 4 resummation, an envelope was obtained for each function
= ---- Wegner expansion to firstorder ~ + I~ T such asy(g). Two look-up tables were then made for a given
R 0.10F ; liuid 3 yroperty versus a temperature like scaling fieldver the
Ts = 0.0299 +0.0003 vaper s entire rangel0,g* [ for the “max” and “min” bounds. Bag-
005F T1=483£0.05 0 O aiw nuls and Bervillier used the following empirical expression
LN to fit the discrete data from a particular look-up table:
0.00k T, = 3315543 + 0000005 K | N
= (1.09 £ 0.01)x10° , F(r) = ZTEH (1+XtPW)Y, (25
9 a= 0275 +0.002 < i=1
. A7=7.03£0.10 u/® = 0.996 0,000 -
3 A7=092£001 . D(t):A—1+Sl\C‘E+1, (26)
3 7 TS St+1
CIQ fit range —>|
QF? 6 Cp=372%£005 o T<T, 7 t=0|1. (27)
3 sk 45=376£005 Bo=-536£008 4+ T>T, g HereN<5 depending on the required fit quality. In the ho-
~ A]=099£001 - mogeneous phas€>T,, the F(7) expression was used to
u el ] calculate the correlation length invergel(7), the suscepti-
Al N | bility inverse x;'(7), and the specific hea@,(7). In the in-
13r — MSRjointfitto . G, andlAp,,| homogeneous phade< T, the F(7) expression was used to
o calculate the reduced liquid and vapor densifigs \/(7), the
@ 12+ _ + liquid S -1 . '
= B,=1.021 + 0.003 O vapor susceptibility inversg;(7) at the coexistence curve, and the
= L1} B,=091£001 J specific heatCy(7) in the coexisting phases.
8 - All the constantsZ, X;, Y;, andS, in Egs.(25) and(26)
< 1of | > ] are universal and are tabulated in Ra£). For specific heat,
. , | fitrange L] another universal constaX was added td=(7) that is re-
10° 10 10° 10 10" lated to the critical fluctuation background. The universal
7T, -1 asymptotic amplitude ratios were determined from the

value in eachF(7). The proportionality factom is the link

FIG. 1. A joint fit (solid lineg of the MSR model to théHe ~ Petweert and the experimental reduced temperaturkiere
susceptibility, specific heat, and coexistence curve measurement.iS @ nonuniversal parameter that exclusively controls the
The fit used all they; data and theC, and|Ap, \| data over the magmtude of the corrections to scaling. The first Wegner
range indicated by the arrows. The dashed lines are the Wegn@mplitudes can be calculated using

expansion to first order using the amplitudes calculated with the N

best fit parameters/u*, W anda. The values of the fitting param- {FiAi Bl,ﬁ} — KQAE XY, (28)
eters and calculated critical amplitudes are compared with other -1

models in Table VI. The dot-dashed straight lines represent the

asymptotic predictions from the fit. with K=-1 for yr and§, andK=+1 for Cy, andAp .

Since there are two setémax” and “min”) of F(7) for
Equation(24) can be transformed into an expression veryeach thermal property, their difference in the present theoret-
similar to Eq.(20) using the scaling relatioy=»(2-7) and ical calculation is generally much larger than the accuracy of
the identity {,(u*)=-». Here 5 is the critical exponent of the experimental m_easurements, sometimes neither one nor
the fluctuation correlation at the critical point amdis the the other agreed with the measurements. To overcome this
critical exponent of the correlation length Thus the only probl_em, Bagnuls and Bervillier defined a new theoretical
difference between Eq24) and Eq.(20) is that the ampli-  function[12]
tude before the exponential function is a constant in(24) - ErE 1-E
while it is a mild function ofu(l) in Eq. (20). Similar com- Fe() = [Fna 7 I Fmin( D1, 29
parisons of the expressions for the specific heat and coexistiith E being an additional adjustable parameter. In fitting
ence curve can be made between the MSR and MR schemd==(7) to experimental data] is an adjustable parameter for
Recently Bagnuls and Bervillier reconsidered their MR both Fr,,, and Frn. In the case of specific heat, a linearly
scheme. They improved their sixth-loop serf@®,11] and  mixed Xg=EXg*+(1-E)Xg" term is added tdFz. When
then made a new seventh-loop sefitg]. In these sixth- and fitting to experimental dataFg(7) is scaled by a fluid-
seventh-loop series, they chose a new convergence criteri@lependent amplitudéy, for the isothermal susceptibility,
for the Borel resummation of different functions likgg)  for the specific heatn, for the coexistence curve, argg for
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T — Ty — T T T T T 7

0.20} 0.20}
% =0.146 £ 0.001 7= 1.38 T% = 0.148 £ 0.001 =152
I1=113+001 IM= 1.13«:0.01+
+
L 4 4+ L
0.15 o 0.15 T
= . T>T, = . + T>T,
= --- Wegner expansion to first order L = --- Wegner expansion to first order L E
5 oa0f e liquid J &5 o010} o liquid p
o vapor o vapor -
To =0.0308 + 0.0001 - T'o = 0.0310 + 0.0001 ,/’
0.051- I't =3.58 £0.05 o O 0.05k I't =5.30+0.07
[ ]
0.00L T, =3.315540 + 0.000005 K J 0.00L T, = 3.315545 + 0.000005 K J
E = 0.500 £ 0.000 E = 0.500 £ 0.000
ol 0= 0.0177 £ 0.0005 ," i ol 0= 0.0190 £ 0.0005 s
4

Xo=1.818 £0.008
Co=2.231 £0.009

. Zo=1.835 £0.008
Ap=7149£0.027  -2212+0.009

A7=0831001

Ap=6.883+0026
AT=117%001

T

© fit range —»]
Cp=667£001 o T<T,

sl Ab=3mzo01 Bo=831x003 * T sl A;=384£001 Bo=-846£003

A7=1.13£001 =5 A}=1.07£001

fit range ——|

Cp=665£001 o T<T,

+ T> TL. e
,

(Cy —Cs—B.) 1"
F

(CV _CB _Bcr) Ma
F

—— B&B MR joint fit to y;, G, and [Ap; | —— B&B MR joint fit to ¥7, G, and |Ap, |

T 12F B,=1008£0.004 : f,‘gl')‘(‘)‘j T 12} py=1039+0004 + 3/1;1;;1 o]

= L B;=1.001+0.013 ] = U B=0218£0003 e - -

S WY J o

2 1of HE | A S f | , ]
™ el | ] [ >

1 ﬁtrange. ) , . ﬁtrangeI .
10° 10" 10° 10” 10" 10° 10* 10° 102 10"
|T/T, -1| |T/T, -1|
FIG. 2. A joint fit (solid lineg of BB’s improved sixth-loop FIG. 3. A joint fit (solid lineg of BB’s complete seventh-loop

scheme to the’He susceptibility, specific heat, and coexistencescheme to the’He susceptibility, specific heat, and coexistence
curve measurements. The fit used all phedata and theC, and  curve. The fit used all thgy data and theS,, and|Ap | data over
|Apy| data over the range indicated by the arrows. The dashethe range indicated by the arrows. The dashed lines are the Wegner
lines are the Wegner expansion to first order using the amplitudesxpansion to first order using the amplitudes calculated with the
calculated with the best fit parameteyg co, and 6. The values of  fitting parametergy, Co, andé. The values of the best fit parameters
the fitting parameters and calculated critical amplitudes are comand calculated critical amplitudes are compared with other models
pared with other models in Table VI. The dot-dashed straight linesn Table VI. The dot-dashed straight lines represent the asymptotic
represent the asymptotic predictions from the fit. predictions from the fit.

the correlation length In our fit, y, andc, were adjusted and better fits than the seventh-loop scheme even though the
m, was calculated through the universal ratig, seventh-loop scheme generated the smajféstith E=1.
:aAgFngg. E was initially fixed at 0.5 in order to have a The Wegner expansions to first order, calculated using the

minimum number of adjustable parameters when comparingjritical amplituded’s, I'y, Ay, Ay, By, andB, from the fit to
the BB theory to other theoretical predictions. e MR models, are also shown as dashed curves in Figs. 2

Figure 2 shows the result of the joint fit of the experimen-and 3. The dashed curves are consistently above the solid

tal data to the improved sixth-loop predictions by Bagnuls
and Bervillier[10,11. Figure 3 shows the result of the joint ¢
fit of the same data to the new seventh-loop complete cross-
over predictiong12]. The weight and fitting ranges were the ¢
same as used for the MSR analySisandCy were adjusted

TABLE II. The values of goodness of fiﬁ for different mixing
values in the MR analysis.

Improved sixth loop  Complete crossover seventh loop

in addition to#, xo, andc,. The values oE fall outside valid 0.0 1.35 1.80
range O<E=<1 if it is allowed to vary in the fit. Table I 0.5 1.38 1.52
shows the values of the goodness of fit for different fiked 1 g 1.43 1.32

values. On average, BB’s improved sixth-loop scheme gave
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TABLE Ill. The covariance matrix generated from the joint fit - 1
of the MR sixth-loop scheme to the experimental data. The off- AD = r2Y"4G(0) + EBcrrz(l -b%6%)?, (33
diagonal elements represent the correlation between the fitting pa-
rameters. The result from the seventh-loop scheme is almosihere the analytic functions of are
identical.

T(0)=To0(1- 6%, k(6)=1-b262, (34)
Te 0 Xo Co Cs
T, 1 017  0.39 034  -0.07 W(0) = Mplo[wo + Wy 0%+ W07 +w30° +w,0°%].  (35)
0 8';; 339 039 _8'83 _8'38 Here B,=-2lwo<0 is a fluctuation induced constant,
Xo : : 1 : .05 o= a2 Ta=| 5312 _ 2
= o= , andg=(uA)</c;. The bare param-
Co 0.34 -0.02 0.90 1 027 =M 0o 9=(uA)/c P

etersmy and |y are two system-dependent coefficients that
Ce -0.07 -0.48 0.05 0.27 1 determine the asymptotic critical amplitudes. The two cross-
over parameters and A/c}'? determine the shape of cross-

) over and the crossover temperature s¢h6. The parameter
curves except for the coexistence curve from the sevenths2 544 the coefficientsvy- - -w, were selected such that all

. _ . . . . —2
loop analysis. Whe&=1 is used to minimizg,, the dashed  he yniversal asymptotic amplitude ratios were satisfied
curve of the Wegner expansion of the coexistence curve igithin their accuracies with the values given in the Ising
above the solid curve. model calculation of Ref[17] while the ratios of the first

Table Il shows the correlation values of the MR fitting ¢ rection-to-scaling amplitudes agreed within their accura-
parameters. There is a strong correlation between the ampliies with the values given by BB’s earlier wofK].

tude parametergy and Co that is similar to the correlation In the lattice gas model, the ordering and nonordering
betweenu anda found in the MSR analysis. fields h, and h, are mapped onto the physical fields of the

V. CROSSOVER PARAMETRIC EQUATION OF STATE chemical potential differenc&z and reduced temperature
- AT. Here Au= (pc/ Po)(To/ T) (=) With uo(T) being an
me?r?:yrﬁg daeregL?;imO\(/)fdseé ?,.I;g]egaien devc\)/nct[(rn]zsc())\r/% rin%?raénalytic function of temperature that is equal to the chemical
asymptotic extended parametric mod&b]. In that model, potential . whenh, =0.

the rescaled critical part of the classical local Helmholtz free- For real fluids, the ordering and nonordering fields are
critical p approximated by linear combinations of the physical fields
energy density is given by

Al and AT in order to account for the corrections to scaling
in the nonasymptotic regime. By choosing the value of the
scaled energy density at the critical point to heg

=(&I~3/ a"f)ﬁ evaluated at the critical point, one can write the
linear combination as

~ 1 .~ . U*uA
ARG = SCATM? + — =

2 M4+ %(%M)Z. (30)

Here the reduced temperature is definedAg'sel—TC/T
(which is different from the traditional definition of reduced

temperaturg u=u/u* is a normalized coupling constam, h, = AL, (36)
is a dimensionless cutoff wave number, andharacterizes
the range of intermolecular interaction. In this scheuofeis h, = AT + b,A%, (37)

the value ofu at the fixed point of the Ising model, although
its value is different from that of MSR because of differentWith b, being the mixing parameter that is also a measure of
scaling in the Hamiltonian. the asymmetry in the slope of the coexistence curve. The
For a parametric equation of state in a reducedfarameters conjugate to the fiekisandh, are given by
temperature versus reduced-density plot, the radial variable ~
measures the distance to the critical point and angular vari- 0o1=-— (aA_q)
able # measures the angle from the critical density and pre- dhy
serves the analytic dependence. Agayan and Anisimov for-
mulated the crossover by rescaling the distance variable (aA@)
Po="\ "
hl

) = Ap — bAT, (38)
hy

with the crossover functiolY that satisfied = AT, (39

oh,
1-(1-wY=u1l+(Alk)?2y"A. (31)

Here k*=crY@ YA and v is the critical exponent for the

correlation length. and its valuél, at the critical point
The scaling field$,,h,, and the critical part of the ther- ¢ A point. .

; T ) ] To carry out the calculation further, the variables from
modynamlc_ pot_entlaACD can be de_scrlbed by the parametric g1 h, were changed to the parametric parameteasid 6.
representation in terms of the variableand ¢ as Once the analytic expressions for the first and second deriva-

— 3122353247 - tives ofr and ¢ with respect tch, andh, are obtained from
hy =Y 1(6), hp=rk(6), 32 the definition ofh, andh, in Eq. (32) as functions of andé,
and the isothermal susceptibility, the specific heat at constant vol-

where Ap=(p/p.—1) is the reduced fluid density anifti
= (U-1,) is the difference between the scaled energy density
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TABLE IV. The covariance matrix generated from the joint fit of

020 T§=0.153 +0.001

P= 231 the CPM model to the experimental data. The off-diagonal elements
=031 $0-01 v represent the correlation between the fitting parameters.
+
0.15F + T+I_ E _
T u lo My Cs
= W on to first ord + T>T,
T‘; 010k - €gner expansion to Iirst oraer ° liqllid | Tc 1 _015 037 _015 _018
I = 0.0310 £ 0.0002 e vapr u  -015 1 -0.15 091  -050
I =4.17 £ 007 X0 0.37 -0.15 1 -0.11 -0.49
0.05F o ©
° Co -0.15 0.91 -0.11 1 -0.49
Cg -0.18 -0.50 -0.49 -0.49 1
0.00L T, = 3.315523 £ 0.000006 K J
Alc? =1.283 £0.000
9l ubar = 0.368 £ 0.004 . - -
Iy=6.902 1 0.034 et SAD IAD
ol Ap=693510.004 my=0.3128 +0.0004 | ApLy=- o b, e (43
= A7=074£001 1/7h 2/ hy
- (6) m - . -
§ 7 D i range” 3] - For a specific heat measurement in the coexisting phases, the
| © 8 system follows the path ob=+1 before and after a heat
H‘? or Cp=3861002 o T<T, 1 pulse is applied. From EQq(32), it can be shown that
3 s} Ai=3esrom Be=S09x003 * T>Te o (5hy/4T),;=0, which implies (A/dT) pusy= (Ul dhp)y (0
~ A]=0.611001 s ==1). For a given reduced temperature and density, the pa-

rameterg and @ are solved numerically. It is well known that
3He has the most symmetric coexistence curve among simple
cpm joint fit to x, G, and |Ap, | N fluids. This implies thab,~ 0 for *He. In this paper, we set

L3r - b,=0 to simplify our expressions and calculations. Along the
| liquid o Ot iti i =0 i =
‘?LE L2 B - 1.028 £ 0001 ¥ vl;l;;r “ fr:lljlscﬁl _ls(,)ochore abovd,, one hasf=0 in the casd,=0,
= il Bi=07m31001 =% .
& g™ i In the joint fit of the CPM model to the isothermal sus-
< o[ i s s ) | ceptibility, the specific heat, and the coexistence curve of
™ fit range 1 ] ®He, I, My, U, Cg, and T, were adjusted. In this fit) is fixed

at unity, the value obtained in the Ising mod&B], andc;
=6/77 is also fixed based on the approximation of the inter-
|77 1] action range between fluid moleculgk8]. The weighting
and total standard deviation for each set of experimental data
o - - is the same as before. The joint fit results are shown in Fig. 4
susceptibility, specific heat, and coexistence curve measurementg, 4 compared with other models in Table VI. The Wegner

The fit used all theyr data and theCy and ‘APL’.V‘ data over the expansions to first order are also shown as dashed curves in
range indicated by the arrows. The dashed lines are the Wegnt]a:rig 4 using the critical amplitudeE?, T* A(i) A B. B
. o 11 ’ » PO P1

expansion to first order using the amplitudes calculated with the .
fitting parameterg,, my, andu. The values of the best fit parameters calculated from the fit to the CPM model. These dashed

gurves are either above or below the solid curves that are
in Table VI. The dot-dashed straight lines represent the asymptotiEaICUIaFed l-Jsmg the full CPM model. On the Other_ hand, as
predictions from the fit. shown in Figs. 1-3, the calculated Wegne_r expansion curves
from the MSR and MR models are consistently above the
solid curves calculated from the full models. The relatively
Iarge}i generated from the fit to the CPM model appears to
come from the large difference between theory and experi-
Tc( ap> ment in the specific heat belo.
T

FIG. 4. A joint fit (solid lineg of the CPM model to théHe

ume, and the coexistence curve can be calculated from

XT=7 (40) Table IV shows the correlation values of the CPM fitting
parameters. Again there is a strong correlation between two
of the parameters andm,, similar to what was found in the

MSR and MR analyses.

I

CyT>Ty = (%)Ti‘) | (41
as p VI. UNIVERSAL AMPLITUDE RATIOS

Even though the leading amplitude and subsequent Weg-
Y ner expansion coefficients are fluid dependent, certain com-
—) , (42 bined ratios of these amplitudes are universal. From the
ohy hy equations for the first Wegner amplitudes of the specific heat,

Tc

2
CUT < Tep=pexd = (?) (
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TABLE V. The values of universal amplitude ratios obtained from various theoretical models.

Amplitude
ratios MSR MR(7)° CPM® Fz¢
T3, 4.94 4.79+0.10 4.94 4.95+0.15
ASIA, 0.535 0.537+0.019 0.524 0.523+0.009

Re 0.0580 0.0574+0.0020 0.0580 0.0581+0.0010

Iy 0.228 0.215+0.029 0.195
ATIA 1.07 1.36+0.47 0.83
B,/T} 0.76 0.40+0.35 0.897

#Zhonget al. [14].

bBagnuls and Bervillief12).

“Agayan and Anisimoy13].
9Fisher and Zinr[17].

susceptibility, coexistence curve, and correlation length, one
notices in the MSR model that the system-dependent part is

the same in every expressiptd]. Equation(28) also shows

VIl. DISCUSSION

In this paper we have used parametric expressions to cal-

that all first Wegner amplitudes share the same systenetulate the isothermal susceptibility, specific heat, and coex-
dependen®” in the MR scheme. Therefore the ratio of any istence curve. These parametric expressions were based on
of these first Wegner amplitudes is universal based on ththe MSR, MR, and CPM theoretical models. All the critical

MSR and MR¢* models. The expressions for these univer-leading amplitude ratios were defined in these models and

sal ratios in the MSR scheme have been given in Ref].

their values are listed in Table V. The theories were fitted to

In this paper we only list the values in Table V. The valuesthe *He experimental data recently obtained for the isother-

given by Bagnuls and Bervillier are closely matched to thosemal susceptibility and specific heat, and earlier measure-
of Guida and Zinn-Justini8] after the readjustment of the ments of the coexistence curve. The agreement between
these theories and experimental measurements is good.

Borel resummation criterigl2).

TABLE VI. The dimensionless system-dependent parameteréHer The adjustable parameters are obtained from the joint fit of the
three different models to the measureg Cy, and|Ap, /| data of*He. Zero uncertainty implies that the parameter is held constant during

the fit.
MSR MR(6)* MR(7)° CPM
X 1.40 1.38 1.52 2.31
u/u*=0.996+0.000 E=0.5+0.0 0.5+0.0 A/c}'?=1.283+0.000
#=0.0177+0.0005 0.0190+0.0005 U=0.368+0.004
wX10°=1.09+0.01 X0=1.818+0.008 1.835+0.008 1p=6.902+0.034
a=0.275+0.002 p=2.231%0.009 2.212+0.009 my=0.3128+0.0004
Cs 3.720.05 6.67+0.01 6.65+0.01 3.86+0.02
T, (fit) 3.315543+0.000005 3.315540+0.000005 3.315545+0.000005 3.315523+0.000006
r; 0.147+0.001 0.146+0.001 0.147+0.001 0.153+0.001
I, 0.0299+0.0002 0.0308+0.0001 0.0307+0.0001 0.0310+0.0002
r; 1.10+0.01 1.13+0.01 1.17+0.01 0.81%0.01
r; 4.83+0.05 3.58+0.05 5.49%0.05 4.17+0.07
A 3.760.05 3.72+0.01 3.80%0.02 3.630.02
A 7.03+0.09 6.88+0.03 7.09+0.03 6.935+0.004
A 0.99+0.01 1.13+0.01 1.100.01 0.61+0.01
A 0.92+0.01 1.17+0.01 0.86+0.01 0.74+0.01
Ber -5.39+0.08 -8.31+0.03 -8.38+0.03 -5.09+0.03
Bo 1.021+0.002 1.008+0.004 1.029+0.004 1.028+0.001
B, 0.91+0.01 1.00+0.01 0.225+0.003 0.73+0.01

aSixth-loop calculation.
bSeventh-loop calculation.
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Although three model parameters were used in all thestate even though it is phenomenological. This CPM model
joint fits to the experimental data, the strong correlation obwas developed to fit simple fluids as well as complex fluid
served between two of the three adjustable model parametesgstems that exhibit nonmonotonic crossover behavior. This
for each theoretical model suggests tHae¢ as a simple fluid nonmonotonic crossover behavior could be described by the
is situated very close to a renormalized trajectory that linksCPM approach using a finite cutoff wavelength as an addi-
the Gaussian and the Wilson-Fisher fixed po[i$,20. Be-  tional fitting parameter. However, in simple fluid systems
cause of this special feature of simple fluids, the roles playetlke He, crossover behavior of different physical quantities
by other nonuniversal scales are effectively negligible, anadtan be described quite well within the framework of the field
the number of adjustable parameters can be reduced. Thieeoretical¢* model without a finite cutoff wave number.
degree of degradation in the goodness of}ﬁtdue to the NASA has supported the development of future micro-
reduction of the adjustable parameters depends on the pagravity flight experiment§21,22 performing susceptibility,
ticular model. In the MSR case, the very high correlation ofspecific heat, and coexistence curve measuremeritdein
0.99 betweeru anda indicates that using only two adjust- the asymptotic region. Combining these possible future mi-
able parameters would not result in any significant decreaserogravity measurements in the asymptotic region with
in the fit quality. The MSR model with one less adjustableground-based measurements in the crossover region would
parameter has a comparalﬁ to that of the MR model. permit a rigorous test of the predictions of renormalization
Both the MSR and MR models fit better than the CPM modeltheories.
which implies that they provide a better representation of the
real fluid behavior near the critical point. The fitting param-
eters and the resultant critical amplitudes for all these models
are listed in Table VI. We are grateful to Dr. Bervillier, Professor Anisimov, and

Although all the theoretical models tested in this paperProfessor Dohm for a critical reading of the manuscript. The
provide a good description of experimental measurementgesearch described in this paper was carried out at the Jet
along the critical isochore and coexistence curve, the mor@ropulsion Laboratory, California Institute of Technology,
first-principle MSR and MR models are not complete equa-under contract with the National Aeronautics and Space Ad-
tions of state. The CPM model is a complete equation ofministration.
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